GNCGCP - Graduated NonConvexity and Graduated Concavity Procedure
نویسندگان
چکیده
In this paper we propose the Graduated NonConvexity and Graduated Concavity Procedure (GNCGCP) as a general optimization framework to approximately solve the combinatorial optimization problems on the set of partial permutation matrices. GNCGCP comprises two sub-procedures, graduated nonconvexity (GNC) which realizes a convex relaxation and graduated concavity (GC) which realizes a concave relaxation. It is proved that GNCGCP realizes exactly a type of convex-concave relaxation procedure (CCRP), but with a much simpler formulation without needing convex or concave relaxation in an explicit way. Actually, GNCGCP involves only the gradient of the objective function and is therefore very easy to use in practical applications. Two typical NP-hard problems, (sub)graph matching and quadratic assignment problem (QAP), are employed to demonstrate its simplicity and state-of-the-art performance. Index Terms Combinatorial optimization, Graduated optimization, Deterministic annealing, Subgraph matching, Quadratic assignment problem
منابع مشابه
A Weighted Common Subgraph Matching Algorithm
We propose a weighted common subgraph (WCS) matching algorithm to find the most similar subgraphs in two labeled weighted graphs. WCS matching, as a natural generalization of the equal-sized graph matching or subgraph matching, finds wide applications in many computer vision and machine learning tasks. In this paper, the WCS matching is first formulated as a combinatorial optimization problem o...
متن کاملGraduated Nonconvexity by Functional Focusing
Reconstruction of noise-corrupted surfaces may be stated as a (in general nonconvex) functional minimization problem. For functionals with quadratic data term, this paper addresses the criteria for such functionals to be convex, and the variational approach for minimization. I present two automatic and general methods of approximation with convex functionals based on Gaussian convolution. They ...
متن کاملComparison of the Efficiency of Deterministic and Stochastic Algorithms for Visual Reconstruction
Piecewise continuous reconstruction of real-valued data can be formulated in terms of nonconvex optimization problems. Both stochastic and deterministic algorithms have been devised to solve them. The simplest such reconstruction process is the “weak string.” Exact solutions can be obtained for it, and are used to determine the success or failure of the algorithms under precisely controlled con...
متن کاملA Graduated Assignment Algorithm for Graph Matching - Pattern Analysis and Machine Intelligence, IEEE Transactions on
A graduated assignment algorithm for graph matching is presented which is fast and accurate even in the presence of high noise. By combining graduated nonconvexity, two-way (assignment) constraints, and sparsity, large improvements in accuracy and speed are achieved. Its low order computational complexity [O(/m), where land mare the number of links in the two graphs] and robustness in the prese...
متن کاملInversion of Large-Support Ill-Posed Linear Operators Using a Piecewise Gaussian MRF - Image Processing, IEEE Transactions on
We propose a method for the reconstruction of signals and images observed partially through a linear operator with a large support (e.g., a Fourier transform on a sparse set). This inverse problem is ill-posed and we resolve it by incorporating the prior information that the reconstructed objects are composed of smooth regions separated by sharp transitions. This feature is modeled by a piecewi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1308.6388 شماره
صفحات -
تاریخ انتشار 2013